Artificial Neural Network

Artificial Neural Network (Jaringan Syaraf Tiruan) adalah paradigma pemrosesan suatu informasi yang terinspirasi oleh sistim sel syaraf biologi, sama seperti otak yang memproses suatu informasi. Elemen mendasar dari paradigm tersebut adalah struktur yang baru dari sistim pemrosesan informasi. Jaringan Syaraf Tiruan, seperti manusia, belajar dari suatu contoh. Jaringan Syaraf Tiruan dibentuk untuk memecahkan suatu masalah tertentu seperti pengenalan pola atau klasifikasi karena proses pembelajaran. 

Jaringan Syaraf Tiruan berkembang secara pesat pada beberapa tahun terakhir.Jaringan Syaraf Tiruan telah dikembangkan sebelum adanya suatu komputer konvensional yang canggih dan terus berkembang walaupun pernah mengalami masa vakum selama beberapa tahun. 

Jaringan Syaraf Tiruan mampu menggambarkan setiap situasi adanya sebuah hubungan antara variabel predictor (independents, inputs) dan variabel predicted (dependents, outputs),ketika hubungan tersebut sangat kompleks dan tidak mudah untuk menjelaskan kedalam istilah yang umum dari “correlations” atau “differences between groups”. 

Beberapa contoh permasalahan yang dapat dipecahkan secara baik oleh Jaringan Syaraf Tiruan antara lain :
1.    Deteksi Fenomena Kedokteran.
Berbagai indikasi yang berhubungan dengan kesehatan (kombinasi dari denyut jantung, tingkatan dan berbagai substansi dalam darah, dll) dapat dimonitoring. Serangan pada kondisi kesehatan tertentu dapat dihubungan dengan perubahan kombinasi yang sangat kompeks (nonlinear dan interaktif) pada subset dari variabel, dapat dimonitoring. Jaringan Syaraf Tiruan telah digunakan untuk mengenali pola yang diperkirakan sehingga perlakuan yang tepat dapat dilakukan.

2.    Untuk Mendeteksi Golongan Darah Manusia.
Dengan menggunakan pengolahan citra. Manusia berusaha keras dengan segala kemampuannya untuk menirukan kehebatan yang mereka miliki, misalnya seorang dokter dengan keahliannya dapat membedakan golongan darah manusia antara A, B, AB, dan O. Dengan pendekatan kecerdasan buatan, manusia berusaha menirukan bagaimana pola-pola dibentuk. Jaringan Syaraf Tiruan telah dikembangkan sebagai generalisasi model matematik dari pembelajaran manusia.

3.    Prediksi Pasar Saham.
Fluktuasi dari harga saham dan index saham adalah contoh lain yang kompleks, multidimesi tetapi dalam beberapa kondisi tertentu merupakan phenomena yang dapat prediksi. Jaringan Syaraf Tiruan telah digunakan oleh analis teknik untuk membuat prediksi tentang pasar saham yang didasarkan atas sejumlah faktor seperti keadaan masa lalu bursa yang lain dan berbagai indikator ekonomi.

4.    Perjanjian Kredit.
Berbagai informasi biasanya didapat dari seorang peminjam seperti umur, pendidikan, pekerjaan dan berbagai data lain. Setelah pembelajaran dari Jaringan Syaraf Tiruan tentang data peminjam, analisis Jaringan Syaraf Tiruan dapat mengidentifikasi karaktersetik peminjam sehingga dapat digunakan untuk mengklasifikasikan peminjam terhadap resiko peminjam dalam kategori baik atau buruk.

5.    Monitoring Kondisi Mesin.  
Jaringan Syaraf Tiruan dapat digunakan untuk memangkas biaya dengan memberikan keahlian tambahan untuk menjadwa lkan perawatan mesin. Jaringan Syaraf Tiruan dapat dilatih untuk membedakan suara sebuah mesin ketika berjalan normal (“false alarm”) dengan ketika mesin hampir mengalami suatu masalah. Setelah periode pembelajaran, keahlian dari Jaringan Syaraf Tiruan dapat digunakan untuk memperingatkan seorang teknisi terhadap kerusakan yang akan timbul sebelum terjadi yang akan menyebabkan biaya yang tidak terduga.

6.    Pemeliharaan Mesin.
Jaringan Syaraf Tiruan telah digunakan untuk menganalisis input dari sebuah sensor pada sebuah mesin. Dengan mengontrol beberapa parameter ketika mesin sedang
berjalan, dapat melakukan fungsi tertentu misalnya meminimalkan penggunaan bahan
bakar.

Sumber : https://trirezqiariantoro.files.wordpress.com/2007/05/jaringan_syaraf_tiruan.pdf









Komentar

Postingan populer dari blog ini

Fuzzy logic

BUSINESS RELATIONSHIP MANAGEMENT

Pengantar Inkscape